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ABSTRACT

We study aggregate fluctuations in an economy where firms have persistent differences in total
factor productivities, capital and debt or financial assets. Investment is funded by retained earn-
ings and non-contingent debt. Firms may default upon loans, and this risk leads to a unit cost
of borrowing that rises with the level of debt and falls with the value of collateral. On average,
larger firms, those with more collateral, have higher levels of investment than smaller firms with
less collateral. Since large and small firms draw from the same productivity distribution, this
implies an insuffi cient allocation of capital in small firms and thus reduces aggregate total factor
productivity, capital and GDP.

We consider business cycles driven by exogenous changes in total factor productivity and by
credit shocks. The latter are financial shocks that worsen firms’cash on hand and reduce the
fraction of collateral lenders can seize in the event of default. Our nonlinear loan rate schedules
drive countercyclical default risk and exit. Because a negative productivity shock raises default
probabilities, it leads to a modest reduction in the number of firms and a deterioration in the
allocation of capital that amplifies the effect of the shock. The recession following a negative
credit shock is qualitatively different from that following a productivity shock. A rise in default
alongside a substantial fall in entry causes a large decline in the number of firms. Measured TFP
falls for several periods, as do employment, investment and GDP. The recovery following a credit
shock is gradual given slow recoveries in TFP, aggregate capital, and the measure of firms.
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Julia Thomas, mail@juliathomas.net.



1 Introduction

Following the crisis in financial markets accompanying the 2007 recession in the U.S. and

abroad, researchers have worked to better understand the extent to which the fall in real economic

activity came in response to shocks originating in financial markets. We develop a quantitative

dynamic stochastic general equilibrium model where shocks to financial intermediaries affect bor-

rowers’default risk and thus credit conditions facing nonfinancial firms, and thereby assess the

relevance of such credit shocks for the recent economic downturn. Our approach is unique in

having a distribution of firms over capital, debt and firm-specific productivity, endogenous firm

entry and exit, and financial shocks that affect loan rate schedules offered to borrowers.

Beneath the dramatic fall in aggregate lending and the sharp declines in aggregate investment

and employment over the 2007 recession, disaggregated data reveals an unusual disparity in the

impact on firms suggesting this recession may have been largely driven by a shock affecting

firms’ ability to borrow.1 Further, unlike most postwar recessions, this recent recession was

characterized by declines in employment that were disproportionately concentrated among small

firms. At the same time, the corporate sector as a whole held unusually large levels of cash at the

start of the recession.2 These observations suggest that a quantitative analysis of the real effect of

a financial shock should include a nontrivial distribution of firms that vary in their capital, debt,

and retained earnings. The model we develop contains all of these elements while, at the same,

time, maintaining consistency with long-run macroeconomic data.

We explore the extent to which financial shocks reducing firms’cash and the underlying value of

collateral securing loans may have been responsible for the unusual reduction in lending volumes

over the recent recession, the paths of real macroeconomic variables, and the disproportionate

negative consequences among small firms and firms more reliant on external finance. We assume

that firms may default on non-contingent debt. If a firm defaults, the lender recovers only a

fraction of its capital. Thus, the interest rate charged on any given loan rises in the probability

of default and it falls in the fraction of collateral recoverable under default.
1Almeida et al (2009) find that firms that had to roll over a significant fraction of their debt in the year following

August 2007 experienced a one-third fall in their investment relative to otherwise similar firms.
2Using BED data originating from the Quarterly Census of Employment and Wages and maintained by the

BLS, Khan and Thomas (2013) find that firms with fewer than one-hundred employees, as a whole, contracted

employment by twice as much as large firms; see figure 8. Bates et al (2009) show that nonfinancial firms increased

their cash holdings through 2005. See also Table C1 in Khan and Thomas (2013).
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In our model, competitive lenders choose loan rate schedules that provide them with an ex-

pected return for each loan equal to the real return on risk-free debt. As a firm’s probability of

default changes with its expected future productivity, capital stock and debt, its cost of borrowing

is a function of its choice of debt and capital. By assuming that default deprives a firm of its as-

sets and requires immediate exit, we derive several results that allow us to characterize borrowing

and lending in general equilibrium. First, because we abstract from firm-level capital adjustment

costs, we can show that idiosyncratic productivity and cash on hand are suffi cient to describe a

firm’s state. Second, we show that firm’s values are continuous and weakly increasing in cash

on hand. This implies the existence of threshold levels of cash on hand with which we can fully

summarize firms’decision rules regarding default. Specifically, given the current aggregate state,

we derive threshold levels of net worth, which vary with idiosyncratic productivity, such that a

firm repays its loan and continues operating only when its cash on hand exceeds the threshold

associated with its current productivity. We exploit these results to numerically characterize

borrowing and lending in a model where the aggregate state includes a distribution of firms over

idiosyncratic productivity, capital and debt.

In general, firms with higher expected future earnings or capital have a lower risk of default.

This allows them to borrow more, and at lower cost. Thus, our borrowing limits are forward-

looking. By contrast, the risk of default rises with the size of the debt taken on. Beyond some

level of debt, that risk becomes certainty, and there is no interest rate at which such a loan will

be conveyed. Thus, each firm’s ability to borrow is endogenously limited, and these borrowing

limits vary across firms as functions of their individual state.

We calibrate our model using firm-level investment and financial data, data on default rates,

real aggregate data, and data from the flow of funds. We show that, in the long-run, borrowing and

lending with non-contingent debt leads to a misallocation of resources relative to a setting without

financial frictions. Larger firms, those with more collateral, have higher levels of investment than

smaller firms with less collateral. Considering that our firms all draw from the same persistent

productivity distribution, the implication of this is that small firms in the economy have an

ineffi ciently low allocation of capital and production. This misallocation, alongside endogenous

exit in the event of default, reduces average aggregate total factor productivity, as well as GDP

and capital.

When this model is driven by exogenous shocks to aggregate total factor productivity, non-
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contingent loans drive countercyclical default. Nonetheless, a productivity shock selected to yield

the observed decline in measured TFP over the 2007 recession falls far short of explaining the

observed declines in GDP, investment and employment, the reduction in lending is an order of

magnitude too low and it does not yield disproportionate employment declines among small firms.

When we examine the response to a financial shock, the greatest declines in output, employ-

ment and investment do not occur at the onset. This distinction relative to the response following

an exogenous productivity shock lies in the resulting allocative disturbance. A credit shock af-

fects expected future aggregate total factor productivity through a reduction in the number of

firms and a worsening in the allocation of resources across them. Although it has essentially no

immediate effect on aggregate production, a financial shock that worsens firms’financial positions

and lenders’ability to seize defaulting firms’collateral can eventually increase the misallocation

of capital suffi ciently to cause a large and protracted fall in real economic activity. Our results

suggest that this type of shock is able to explain the 2007 recession well in several respects. First,

it generates unusually steep declines in GDP, investment and employment, while simultaneously

predicting a comparatively modest decline in measured TFP. Second, these declines are more

concentrated among small firms than large firms. Third, the recovery following a credit shock

is unusually gradual because of a pronounced reduction in the number of firms driven by large

increases in exit and reductions in entry over the downturn. Given decreasing returns to scale

at individual firms, the number of available production units is itself a valuable stock that affects

measured aggregate total factor productivity. Until this stock recovers, the return on capital

remains low. This slows the return in investment in comparison to the recovery following a real

shock, causing weaker, more gradual, recoveries in production and employment.

1.1 Related Literature

Several recent studies have begun exploring how shocks to financial markets affect aggregate

fluctuations. A leading example is Jermann and Quadrini (2012), which examines a representative

firm model wherein investment is financed with debt and equity, while costs of adjusting dividends

prevent the avoidance of financial frictions. These frictions stem from limited enforceability of

debt contracts, which gives rise to endogenous borrowing limits. If the firm chooses to default,

the lender can only recover a fraction of its net worth, and shocks to the fraction the lender

can confiscate alter the severity of borrowing limits. Because the firm’s enforceability constraint
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always binds, a credit shock to that constraint causes large reductions in real economic activity.

Beyond our emphasis on heterogeneity and equilibrium default, a notable difference in our setting

is that financial frictions do not dampen the response of the aggregate economy to non-financial

shocks. This may be useful in light of findings by Reinhart and Rogoff (2009) and Bianchi and

Mendoza (2012) that large financial shocks are rare in postwar U.S. history.

Khan and Thomas (2013) study a more ad-hoc financial friction in the form of collateralized

borrowing limits. There, a credit shock is an unanticipated change in the fraction of their

collateral firms can borrow against. When hit by such a shock, that model delivers a large,

persistent recession with some similar features to the 2007 U.S. recession. Our current work

departs from this study in three important ways. First, while capital serves as collateral in

our model, our borrowing limits depend on firm-level and aggregate state variables and arise

from endogenous forward-looking lending schedules. Second, given the complexity associated

with solving for equilibrium loan schedules, we abstract from the real microeconomic frictions

considered there. Third, our model generates endogenous movements in entry and exit rates, and

these series exhibit cyclical properties consistent with the U.S. data (see Campbell (1998)). This

is particularly important in generating more gradual recoveries in employment and investment

following a shock affecting financial markets, and thus greater consistency with the post 2009Q2

U.S. experience.

Buera and Moll (2013) also study a heterogenous agent model with borrowing subject to

collateral constraints. In their setting, entrepreneurs have constant returns production, face

i.i.d. productivity shocks and observe shock realizations a period in advance. As a result, the

distribution in their model does not evolve gradually over time as in ours, and they find shocks to

collateral constraints are isomorphic to shocks to aggregate total factor productivity. Shourideh

and Zetlin-Jones (2012) also study financial shocks in a model where heterogeneous firms face

collateral constraints. Their model features two types of intermediate goods producers, publicly

owned and privately owned. They argue that financial shocks are a promising source of aggregate

fluctuations when there are strong linkages through intermediate goods trades across firms.

The financial frictions we study arise from non-contingent loans that introduce equilibrium

default into the model. This type of loan contract was first characterized by Eaton and Gersovitz

(1981) in their study of international lending. Recent work by Aguiar and Gopinath (2006) and

Arellano (2008) undertake quantitative analyses of sovereign debt, while Chatterjee et al. (2008)
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study an environment with unsecured lending to households. There are, however, well known

alternatives to assuming non-contingent loans. Cooley, Marimon and Quadrini (2004) study

constrained-optimal dynamic contracts under limited enforceability. Elsewhere, a large literature

examines agency costs as the source of financial frictions, but does not consider financial shocks

as such.3

Our emphasis on productivity dispersion, non-contingent debt and equilibrium default is

shared by Arellano, Bai and Kehoe (2012), who explore the extent to which aggregate fluctu-

ations are explained by movements in the labor wedge driven by uncertainty shocks. Our study

differs in that we include investment and study aggregate responses to financial shocks, our em-

ployment levels are not predetermined, and measured TFP is procyclical.4 Our firms accumulate

capital and may borrow or save. They have a natural maturing phase and tend to eventually out-

grow default risk. Thus, the incidence of a credit shock differs, and we can explore the extent to

which small firms are disproportionately affected. Following such shocks, shifts in the distribution

of capital drive movements in aggregate total factor productivity through misallocation. In this

respect, our study is also related to Buera and Shin (2013), who show that collateral constraints

can protract the transition path to economic development if capital is initially misallocated.

2 Model

Our model economy has three types of agents: households, firms, and a perfectly competitive

representative financial intermediary. Only firms are heterogeneous. They face persistent differ-

ences in their individual total factor productivities. Furthermore, their only source of external

finance is non-contingent one-period debt provided by the financial intermediary at loan rates

determined by their individual characteristics. These two aspects of the model combine to yield

substantial heterogeneity in production.

2.1 Production, credit and capital adjustment

We assume a large number of firms, each able to produce a homogenous output using

predetermined capital stock k and labor n, via an increasing and concave production func-

3See Bernanke and Gertler (1989), Carlstrom and Fuerst (1997), and Bernanke, Gertler and Gilchrist (1999).
4Gomes and Schmid (2010) develop a model with endogenous default where firms vary with respect to their

leverage and study the implication for credit spreads. Credit spreads are also a focus of Gertler and Kiyotaki

(2010), who study a model where such spreads are driven by agency problems arising with financial intermediaries.
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tion; y = zεF (k, n), where F (k, n) = kαnν , with α > 0, ν > 0 and α + ν < 1. Here,

z represents exogenous stochastic total factor productivity common across firms, while ε is a

firm-specific counterpart. We assume ε is a Markov chain, ε ∈ E ≡ {ε1, . . . , εNε}, where

Pr (ε′ = εj | ε = εi) ≡ πεij ≥ 0, and
∑Nε

j=1 π
ε
ij = 1 for each i = 1, . . . , Nε. Similarly, z ∈

{z1, . . . , zNz}, where Pr (z′ = zg | z = zf ) ≡ πzfg ≥ 0, and
∑Nz

g=1 π
z
fg = 1 for each f = 1, . . . , Nz.

At the opening of each period, a firm is identified by its predetermined stock of capital,

k ∈ K⊂R+, the level of debt it took on in the previous period, b ∈ B⊂R, and its current

idiosyncratic productivity level, ε ∈ {ε1, . . . , εNε}. We summarize the distribution of firms over

(k, b, ε) using the probability measure µ defined on the Borel algebra generated by the open subsets

of the product space, K×B×E.

In our model, firms’financial resources and their cost of borrowing are affected by credit shocks.

These are determined by changes in θ, where θ ∈ {θ1, . . . , θNθ} with Pr
{
θ′ = θk | θ = θh

}
≡ πθhk ≥

0 and
∑Nθ

k=1 π
θ
hk = 1 for each h = 1, . . . , Nθ. Let s = (z, θ) be the joint stochastic process for the

exogenous aggregate state with transition matrix πs derived from the Markov Chains {πz} and{
πθ
}
. The bivariate process s has a support with Ns = NzNθ values.

The aggregate state of the economy is fully summarized by (s, µ), and the distribution of firms

evolves over time according to a mapping, Γ, from the current aggregate state; µ′ = Γ (s, µ). The

evolution of the firm distribution is determined in part by the actions of continuing firms and in

part by entry and exit, as will be made clear below.

No microeconomic frictions impede capital reallocation in our model, so any firm’s individual

state in a period can be effectively summarized by its cash on hand, x. Given real wage ω (s, µ)

and capital depreciation rate δ, the cash on hand of a type (k, b, ε) firm that operates is:

x(k, b, ε; s, µ) = y(k, ε; s, µ)− ω (s, µ)n(k, ε; s, µ) + (1− δ)k − b− ξ0 − χθ (s) ξ1 (ε) ,

where y and n represent the firm’s output and employment. The fixed cost of operation, ξ0 +

χ (s) ξ1 (ε), must be paid for the firm to operate in this or any future period. A firm can avoid

it only by permanently exiting the economy prior to production. If it exits, the firm avoids both

its debt repayment and operating cost, but it forfeits current flow profits and its capital stock,

and achieves a value of 0. The fixed cost has two components, a real resource cost and a financial

cost. Both must be paid whenever the firm wishes to continue operation. The real cost is state-

invariant while the financial cost χθ (s) ξ1 (ε), which varies with firm’s idiosyncratic productivity,

is positive only when the indicator function χθ (s) = 1. This is the case whenever θ in s = (z, θ)
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is associated with a credit shock; otherwise χθ (s) = 0.

Because our interest is in understanding how imperfect credit markets shape the investment

decisions taken by firms, we require that firms’dividends must always be non-negative to prevent

them using equity to circumvent frictions in debt markets. Similarly, we must prevent all firms

growing so large that none ever faces a borrowing limit or a cost of borrowing exceeding the

current risk-free interest rate. To do this, we impose some state-independent exit in the model.

In particular, we assume each firm faces a fixed probability, πd ∈ (0, 1), that it will be forced to

exit the economy following production in any given period. Thus, if µt is the number of firms

operating in date t, then πdµt firms will leave the economy between dates t and t + 1 due to an

exit shock. To maintain the total number of firms in our economy at 1 on average, we also have

exogenous birth of potential firms. At the start of any period, µ0 potential firms are born with

(ε, k, b) drawn from a distribution we will describe below. Each potential entrant becomes a new

firm if it pays operating cost and start-up loan.5

Given the aggregate state (s, µ) and its start-of-period individual state (k, b, ε), each firm takes

a series of actions to maximize the expected discounted value of its dividends. First, it chooses

whether to exit or remain in operation. To remain, the firm must be prepared to pay the fixed

operating cost ξ0 + χθ (s) ξ1 (ε) and repay its existing debt b. If a firm defaults on its debt, it

must immediately exit the economy, forfeiting all its remaining revenues and capital. If a firm

fails to pay its operating cost, it also must immediately exit and so will at the same time default

on its debt. Second, conditional on operating, the firm chooses its current level of employment

and production, pays its wage bill, and repays its existing debt. After current production, wage

payments and debt repayment, but prior to investment, each operating firm learns whether it will

be permitted to continue into the next period.6 If the firm is forced to leave the economy by an

exit shock, it takes on no new debt and sells its remaining capital, thus achieving value x, which is

paid to its shareholders as it exits. A continuing firm, by contrast, chooses its investment, current

dividends, and the level of debt with which it will enter the next period.

Before turning to continuing firms’end of period decisions, we first examine the choices among

all firms operating in the current period. Each firm that pays its operating cost to produce chooses

5 If a potential firm does not enter, it defaults on its loan and leaves the economy having neither entered nor

exited.
6We have adopted this timing to ensure that no default arises from the exogenous exit shock in our model. All

firms borrowing this period will be able to produce next period.
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its employment to solve: π (k, ε; s, µ) = maxn[zεkαnν − ω (s, µ)n] where z is given by its value in

s = (z, θ). The firm’s optimal labor and production are independent of its existing debt, b, and

given by:

n (k, ε; s, µ) =

(
νzεkα

ω (s, µ)

) 1
1−ν

(1)

y (k, ε; s, µ) = (εz)
1

1−ν

(
ν

ω (s, µ)

) ν
1−ν

k
α
1−ν , (2)

which in turn imply its flow profits net of labor costs,

π (k, ε; s, µ) = (1− ν) y (k, ε; s, µ) . (3)

These values are common to all firms of type (k, ε) that find it worthwhile to operate given their

start of period state (k, b, ε).

At the end of the period, conditional on it producing, repaying its debt, and escaping the exit

shock, a firm determines its future capital, k′, future debt, b′, alongside current dividends, D.

Given investment, i, the firm’s capital stock for the start of next period is determined by:

k′ = (1− δ) k + i, (4)

where δ ∈ (0, 1) is the rate of capital depreciation, and primes indicate one-period-ahead values.

For each unit of debt it incurs for the next period, the firm receives q(·) units of output for use

toward investment or current dividends. Thus a loan of q(·)b′ implies debt of b′ to be repaid in

the next period, and the continuing firm’s current dividends are D(·) = x − k′ + q(·)b′, where x

is its cash on hand including current profits and the value of nondepreciated capital, after loan

repayment and the payment of the fixed operating cost:

x = π (k, ε; s, µ) + (1− δ) k − b− ξ0 − χθ (s) ξ1 (ε) . (5)

In contrast to models with exogenous collateral constraints, our default risk implies that the

loan discount factor faced by a borrowing firm depends on that firm’s chosen debt and capital

and its current productivity. Given a level of debt, a firm’s capital choice for next period affects

the distribution of its earnings and thus the probability it will repay.

2.2 Cash on hand and firm values

Firms selecting the same k′ and b′ will not all have the same income next period because there

is uncertainty in the firm-specific component of total factor productivity, ε′. Among firms with

8



common (k′, b′), those realizing high productivities may repay their loans, while those realizing

low ones may default. If a firm defaults, the financial intermediary recovers a fraction, ρ (θ),

of the firm’s nondepreciated capital. We assume the remainder of any such firm’s capital is

lump-sum rebated to households, so that default implies no direct loss of resources. Because a

defaulting firm forfeits all its assets, only those firms that repay their debts will pay operating

costs to produce.

When a continuing firm with current idiosyncratic productivity ε chooses to take on a debt

b′, alongside a future capital stock k′, that firm receives q (k′, b′, ε; s, µ) b′ units of output in the

current period. The loan discount factor, q (k′, b′, ε; s, µ), is determined as a function of the firm’s

repayment probability. Competitive lending equates the financial intermediary’s expected return

on each of its loans to the risk-free real interest rate. Letting πslmdm (sl, µ) be the price of an

Arrow security that pays off if s′ = sm, the risk-free real rate is 1
q0(sl,µ)

− 1, where:

q0 (sl, µ) =

Ns∑
m=1

πslmdm (sl, µ) . (6)

Each firm’s loan discount factor is bounded above by the risk-free factor, q0 (s, µ), and below by

0. Given a chosen (k′, b′), and given µ′ = Γ (s, µ), the firm will face q (k′, b′, ε; s, µ) < q0 (s, µ) so

long as there is some possible realization of (ε′, s′) next period under which the firm will default

on its b′. Among firms selecting a common (k′, b′), those realizing higher ε′ next period will be

less likely to default, as will be clear below. Thus, given persistence in the firm productivity

process, q (k′, b′, ε; s, µ) (weakly) rises in ε. For the same reasons, the firm’s q rises in its k′ and

falls in its b′.

Recall the definition of an operating firm’s cash on hand, x, from (5) above. In considering

the lending schedule each firm faces, it is useful to note that a firm’s individual levels of k and

b do not separately determine any of its choices beyond their effect in x. To see this, note that

a firm’s resource constraint (determined by the non-negativity constraint on dividends) may be

written as simply:

x− k′ + q
(
k′, b′, ε; s, µ

)
b′ ≥ 0,

in the absence of any costs of capital adjustment. This means that the firm’s feasible capital and

debt combinations are given by the set Φ (x, ε; s, µ), where:

Φ (x, ε; s, µ) =
{(
k′, b′

)
∈ K×B | x− k′ + q

(
k′, b′, ε; s, µ

)
b′ ≥ 0

}
. (7)
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Since x fully captures previous decisions influencing its current choice set, the firm’s value is

also a function only of x and ε, and does not depend separately upon k and b. This important

result allows us to reduce the firm-level state vector, and thus the dimension of the value and

default functions that characterize competitive equilibrium.

Let V 0 (x, εi; sl, µ) represent the beginning of period value of a firm just before its default

decision, and let V 1 (x, εi; sl, µ) represent its value conditional on repaying its debt and operating.

If Φ (x, εi; sl, µ) 6= {∅}, the firm can cover its operating cost and repay its debt while paying a

non-negative current dividend. In that case, the firm operates in the current period, achieving a

non-negative value V 1 (x, εi; sl, µ). Otherwise, it defaults on its debt and immediately exits the

economy with zero value.

V 0 (x, εi; sl, µ) = max
{
V 1 (x, εi; sl, µ) , 0

}
. (8)

Given the constraint set in (7), it is straightforward to show that a firm’s value is increasing in

its cash on hand, x, and in its productivity, ε.

The firm’s value of operating, V 1, must account for the possibility of receiving the exogenous

exit shock after current production and thus being unable to continue into the next period. Recall

that, with probability πd, the firm is forced to exit at the end of the period. In that case, it

simply pays out its cash on hand as dividend as it exits. Otherwise, it moves to the next period

with continuation value V 2 determined below.

V 1 (x, εi; sl, µ) = πdx+ (1− πd)V 2 (x, εi; sl, µ) (9)

Given the current aggregate state, and given µ′ = Γ (sl, µ), firms continuing to the next period

solve the following problem.

V 2 (x, εi; sl, µ) = max
k′,b′

[
x− k′ + q

(
k′, b′, εi; sl, µ

)
b′ (10)

+

Ns∑
m=1

πslmdm (sl, µ)

Nε∑
j=1

πεijV
0
(
x′jm, εj ; sm, µ

′)],
subject to :(

k′, b′
)
∈ Φ (x, εi; sl, µ) (11)

x′jm = π
(
k′, εj ; sm, µ

′)+ (1− δ)k′ − b′ − ξ0 − χθ (sm) ξ1 (εj) , (12)

where V 0(·) is defined in (8), Φ(·) is given by (7), and π(·) is from (3).
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2.3 Loan rates

We now turn to the determination of the loan discount factors, q(·). Let χ (x′, ε′; s′, µ′) be an

indicator for a firm entering next period with cash on hand x′ and productivity ε′, given aggregate

state (s′, µ′), with this indicator taking on the value 1 if the firm chooses to repay its debt, and

0 otherwise. Since V 1 is increasing in ε, it is possible to identify a threshold productivity,

εd(x′; s′, µ′), at which the firm is indifferent to default, the εd solving V 1
(
x′, εd; s′, µ′

)
= 0. The

firm’s probability of debt repayment, as of the start of the repayment period, is then simply

its probability of drawing ε′ ≥ εd(x′; s′, µ′). This strategy can be adopted to identify firms’

default probabilities as of the end of the current period using the transition probabilities for s

and ε. However, since s and ε are both Markov chains, it is more straightforward to express the

determination of firms’loan discount factors using threshold cash on hand values. Threshold cash

values, xd(ε′; s′, µ′) solve V 1
(
xd, ε′; s′, µ′

)
= 0 and separate those firms of a given productivity

level for which χ (·) = 1 (those with x ≥ xd) from those for which χ (·) = 0 (those that default).

Recall that the financial intermediary providing loans to firms is perfectly competitive. Thus,

the interest rate it offers on any loan is determined by a zero expected profit condition. Taking into

account the fact that the intermediary recovers no more than ρ (θ) fraction of a firm’s remaining

capital in the event of default (or b′ if that is smaller), and recalling the determination of x′jm

from (12), we arrive at the following implicit solution for the loan discount factor.

q
(
k′, b′, εi; sl, µ

)
b′ =

Ns∑
m=1

πslmdm (sl, µ)

Nε∑
j=1

πεij

[
χ
(
x′jm, εj ; sm, µ

′) b′ (13)

+[1− χ
(
x′jm, εj ; sm, µ

′)] min{b′, ρ (θ) (1− δ) k′}
]
,

where x′jm = π
(
k′, εj ; sm, µ

′)+ (1− δ)k′ − b′ − ξ0 − χ (sm) ξ1 (εj) .

Note that the loan price determined by (13) gives the risk-neutral lender the same per-unit

expected return as that associated with risk-free real discount factor, q0 (sl, µ). If a loan involves

no probability of default, then χ
(
x′jm, εj ; sm, µ

′
)

= 1 for every (εj , sm) with πεij > 0 and πslm > 0.

In that case, q (k′, b′, εi; sl, µ) b′ =
∑Ns

m=1 π
s
lmdm (sl, µ) b′, so q (k′, b′, εi; sl, µ) = q0 (sl, µ).

2.4 Households

We close the model with a unit measure of identical households Household wealth is held as

one-period shares in firms, which we identify using the measure λ, and in one-period noncontingent
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bonds, φ.7 Given the prices they receive for their current shares, m0 (x, ε; s, µ), the risk-free bond

price q0 (s, µ)−1, and the real wage they receive for their labor effort, w (s, µ), households determine

their current consumption, c, hours worked, nh, new bond holdings φ′, and the numbers of new

shares, λ′ (x′, ε′), to purchase at ex-dividend prices m1 (x′, ε′; s, µ).

The lifetime expected utility maximization problem of the representative household is:

V h (λ, φ; sl, µ) = max
c,nh,φ′,λ

′

[
U
(
c, 1− nh

)
+ β

Ns∑
m=1

πslmV
h
(
λ′, φ′; sm, µ

′)] (14)

subject to

c+ q0(s, µ)φ′ +

∫
m1

(
x′, ε′; sl, µ

)
λ′
(
d
[
x′ × ε′

])
≤
[
ω (sl, µ)nh + φ

+

∫
m0 (x, ε; sl, µ)λ (d [x× ε])

]
and µ′ = Γ(s, µ).

Let Ch (λ, φ; s, µ) and Nh (λ, φ; s, µ) be the household decision rules for consumption and hours

worked. Let Φh(λ, φ; s, µ) describe the household decision rule for bonds, and let Λh (x′, ε′, λ, φ; s, µ)

be the quantity of shares purchased in firms that will begin next period with cash on hand x′ and

productivity ε′.

3 Computing equilibrium

In recursive competitive equilibrium, each firm solves the problem described by (8) - (12),

households solve the problem described in (14), loans are priced according to (13), the markets

for labor, output and firm shares clear, and the resulting individual decision rules for firms and

households are consistent with the aggregate law of motion, Γ. Using C(s, µ) and N(s, µ) to

describe the market-clearing values of household consumption and hours worked, it is straightfor-

ward to show that market-clearing requires that (a) the real wage equal the household marginal

rate of substitution between leisure and consumption, (b) the risk-free bond price, q−10 , equals the

expected gross real interest rate, and (c) firms’state-contingent discount factors are consistent

with the household marginal rate of substitution between consumption across states.

w (s, µ) = D2U
(
C(s, µ), 1−N(s, µ)

)
/D1U

(
C(s, µ), 1−N(s, µ)

)
7Households also have access to a complete set of state-contingent claims. As there is no household heterogeneity,

these assets are in zero net supply in equilibrium; thus, for simplicity sake, we do not explicitly model them here.
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q0 (s, µ) = β

Ns∑
m=1

πslmD1U
(
C(sm, µ

′), 1−N(sm, µ
′)
)
/D1U

(
C(s, µ), 1−N(s, µ)

)
dm (s, µ) = βD1U

(
C(sm, µ

′), 1−N(sm, µ
′)
)
/D1U

(
C(s, µ), 1−N(s, µ)

)
.

We compute equilibrium in our economy by combining the firm-level profit maximization prob-

lem with the equilibrium implications of household utility maximization listed above, effectively

subsuming households’decisions into the problems faced by firms. Without loss of generality,

we assign p(s, µ) as an output price at which firms value current dividends and payments and

correspondingly assume that firms discount their future values by the household subjective dis-

count factor. Given this alternative means of expressing firms’discounting, the following three

conditions ensure all markets clear in our economy.

p (s, µ) = D1U
(
C(s, µ), 1−N(s, µ)

)
(15)

ω (s, µ) = D2U
(
C(s, µ), 1−N(s, µ)

)
/p (s, µ) (16)

q0 (s, µ) = β

Ns∑
m=1

πslmp (sm,Γ (s, µ)) /p (s, µ) (17)

We reformulate (8) - (12) here to obtain an equivalent, more convenient, representation of the

firm problem with each firm’s value measured in units of marginal utility, rather than output.

v0 (x, εi; sl, µ) = max
{
v1 (x, εi; sl, µ) , 0

}
. (18)

v1 (x, εi; sl, µ) = πdxp (sl, µ) + (1− πd) v2 (x, εi; sl, µ) (19)

v2 (x, εi; sl, µ) = max
k′,b′

[
[x− k′ + q

(
k′, b′, εi; sl, µ

)
b′]p (sl, µ) (20)

+β

Ns∑
m=1

Nε∑
j=1

πslmπ
ε
ijv

0
(
x′jm, εj ; sm, µ

′)],
subject to : (11) and (12).

The problem listed in equations (18) - (20) forms the basis for solving equilibrium allocations in

our economy, so long as the prices p, ω and q0 taken as given by all agents satisfy the restrictions

in (15) - (17), and the loan price schedules offered to firms satisfy (13).

As noted above, a firm of type (k, b, ε) hires labor and produces only if Φ (x, εi; sl, µ) 6= {∅}

and v1 (x, ε; s, µ) ≥ 0, where x = π (k, ε; s, µ) + (1− δ)k − b− ξ0 − χθ (s) ξ1 (ε). In that case, its
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decision rules for labor and output are given by (1) - (2), and its flow profits are given by (3). The

more challenging objects we must determine are D, k′ and b′ for firms continuing into the next

period. These decisions are dynamic and inter-related, and they depend on firm productivity, ε,

and cash on hand, x.

To solve for the forward-looking decisions of continuing firms, we use a partitioning of firms

analogous to that in Khan and Thomas (2013), here extended for the fact that we study noncon-

tingent debt with default and exit. In particular, we assign firms across three distinct categories

reflecting the extent to which their investment activities can be affected by financial frictions

and identify their decision rules accordingly. Firms termed unconstrained are those that have

permanently outgrown the implications of financial frictions. Firms that are constrained type 1

can undertake effi cient investment in the current period while borrowing at the risk-free interest

rate, but face the possibility of paying a risk premium in future. Constrained type 2 firms cannot

finance effi cient investment this period without paying a risk premium.

3.1 Decisions among unconstrained firms

An unconstrained firm has accumulated suffi cient cash on hand such that, in every possible

future state, it will be able to finance its effi cient level of investment at the risk-free interest rate

q0. Because any such firm has effectively outgrown financial frictions, its marginal valuation on

retained earnings equals the household marginal valuation of consumption, p, so it is indifferent

between financial savings and dividends. Viewed another way, the firm’s value function is linear

in its debt or financial savings, so b′ does not affect its k′ decision. Any such firm not forced by the

exit shock to leave at the end of the period adopts the effi cient capital stock k∗ (εi; sl, µ) solving

(21) below, achieving value w2 (·), and, given its indifference to financing arrangements, it is

content to adopt the debt policy Bw(·) we isolate below to maintain that indifference permanently.

w2 (x, εi; sl, µ) = max
k′

[
[x− k′ + q0 (sl, µ)Bw(εi; sl, µ)]p (sl, µ) (21)

+ β

Ns∑
m=1

Nε∑
j=1

πslmπ
ε
ijw

0
(
x′jm, εj ; sm, µ

′)],
where x′jm is given by (12) and w0 (x, ε; s, µ) = p(s, µ)πdx+ (1− πd)w2 (x, ε; s, µ).

We assign an unconstrained firm a minimum savings debt policy solving (22) - (23) to just

ensure that it always maintains suffi cient wealth to implement its optimal investments with no de-
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fault risk under all possible future paths of (ε, s).8 Let B̃
(
k′, εj ; sm,Γ (s, µ)

)
define the maximum

debt level at which a firm entering next period with k′ and realizing (εj , sm) will be unconstrained.

This requires that the firm can adopt k∗ (εj ; sm, µ
′) and Bw (εj ; sm, µ

′) next period while main-

taining D ≥ 0, and that it will choose to remain in the economy. The unconstrained firm debt

policy, Bw(εi; sl, µ), is the minimum B̃jm; i.e., it is the maximum debt with which the firm can

exit this period and be certain to be unconstrained next period, given that it adopts k∗ (εi; sl, µ).

Bw(εi; sl, µ) = min
{εj |π

ε
ij>0 and sm|π

s
lm>0}

B̃
(
k∗ (εi; sl, µ) , εj ; sm,Γ (sl, µ)

)
, where (22)

B̃(k, εi; sl, µ) ≡ π(k, εi; sl, µ) + (1− δ) k − ξ0 − χθ (sl) ξ1 (εi) (23)

+ min
{[
−k∗ (εi; sl, µ) + q0(sl, µ)Bw (εi; sl, µ)

]
,−xd(εi; sl, µ)

}
,

and xd(εi; sl, µ) solves v1
(
xd, εi; sl, µ

)
= 0. Finally, given their decision rules for capital and

debt, we retrieve unconstrained firms’dividend payments as:

Dw(x, εi; sl, µ) = x− k∗ (εi; sl, µ) + q0(sl, µ)Bw (εi; sl, µ) . (24)

3.2 Decisions among constrained firms

We now consider the decisions made by a firm that has not yet been identified as uncon-

strained. We begin by evaluating whether the firm has crossed the relevant wealth threshold to

become unconstrained. This is verified from equation 24 using the unconstrained firm decision

rules (21) - (23). If Dw(x, ε; s, µ) > 0, the firm is unconstrained and those decision rules apply. If

not, it is still constrained in that financial considerations may continue to influence its investment

decisions now or in future, so its choice of capital and debt remain intertwined.

Constrained firms of type 1 can invest to the effi cient capital k∗ (εi; sl, µ) from (21) in the

current period while ensuring that all possible resulting x′jm for next period will imply zero

probability of default; in other words, χ
(
x′jm, εj ; sm, µ

′
)

= 1 for all j,m such that πεij> 0 and

πslm> 0, where x′jm is from (12). Such firms optimally adopt k∗ (εi; sl, µ) and borrow at the

risk-free rate. Because they are sure to remain in the economy throughout the next period, but

have not permanently outgrown financial frictions, their shadow value of internal funds exceeds

the household valuation on dividends. Thus, they set D = 0 and b′ = q0(sl, µ)−1[k∗ (εi; sl, µ)−x].

8We adopt this policy rather than an alternative minimizing currrent dividends so as to bound the financial

savings of long-lived firms.
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This means that, to determine whether a constrained firm is type 1, we need only determine

whether the following inequality is satisfied for all possible j,m combinations.

π (k∗ (εi; sl, µ) , εj ; sm,Γ (sl, µ)) + (1− δ)k∗ (εi; sl, µ)

−ξ0 − χ (sm) ξ1 (εj)− q0(sl, µ)−1[k∗ (εi; sl, µ)− x] ≥ xd(εj ; sm,Γ (sl, µ))

For constrained firms that do not satisfy the type 1 check just above, we know of no convenient

way to separate the loan implied by a given k′ choice to distinctly identify the corresponding debt

level, b′. Unlike type 1 firms above, a type 2 constrained firm may not find D = 0 optimal; it

may in fact achieve higher expected discounted value by paying dividends in the current period

if it faces suffi ciently high probability that it will be forced to default and exit the economy with

zero value at the start of the next period. Thus, we must isolate the k′, b′ and D choices of any

such firm by applying a pure grid-based method to the problem listed in (18) - (20).

Through the presence of type 2 constrained firms, the financial frictions in our economy gener-

ate two types of misallocation reducing aggregate TFP. First, since these firms face q (εi, sl, k
′, b′, µ) <

q0 (s, µ) for k′ = k∗ (εi; sl, µ), they are led to adopt ineffi ciently small capital stocks either because

they cannot borrow to k∗ or because they are unwilling to suffer the implied risk premium. Sec-

ond, with their low cash on hand and poor financing terms, these firms may default on their loans

and exit the economy. Given decreasing returns to scale, the loss of a production unit further

distorts the allocation of aggregate capital away from the effi cient one.

4 Calibration

We explore the firm-level and aggregate implications of borrowing constraints across a series

of numerical exercises. We assume that the representative household’s period utility is the result

of indivisible labor (Rogerson (1988)): u(c, L) = log c + ϕL. The firm-level production function

is Cobb-Douglas: zεF (k, n) = zεkαnν , and firm-specific productivity is the discretized version of

an autoregressive log-normal process, log ε′ = ρε log ε+ η′, with η′ ∼ N
(
0, σ2η

)
, where Nε = 15.

We set the length of a period to be one year. Our annual calibration allows us to be consistent

with establishment-level investment data that determines our idiosyncratic shock process. This,

in turn, determines the typical level of capital reallocation in our model. We determine β, ν,

δ, α, and ϕ as follows. First, we set the household discount factor, β, to imply an average real
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interest rate of 4 percent, consistent with recent findings by Gomme, Ravikumar and Rupert

(2008). Next, the production parameter ν is set to yield an average labor share of income at 0.60

(Cooley and Prescott (1995)). The depreciation rate, δ, is taken to imply an average investment-

to-capital ratio of roughly 0.069, which corresponds to the average value for the private capital

stock between 1954 and 2002 in the U.S. Fixed Asset Tables, controlling for growth. Given this

value, we determine capital’s share, α, so that our model matches the average private capital-to-

output ratio over the same period, at 2.3, and we set the parameter governing the preference for

leisure, ϕ, to imply an average of one-third of available time is spent in market work.

Exact aggregation obtains in a reference model without financial frictions. We use that model

to estimate an exogenous stochastic process for aggregate productivity. We begin by assuming

the shock follows a mean zero AR(1) process in logs: log z′ = ρz log z + η′z with η
′
z ∼ N

(
0, σ2ηz

)
.

Next, we estimate the values of ρz and σηz from Solow residuals measured using NIPA data

on real GDP and private capital, together with the total employment hours series constructed

by Cociuba, Prescott and Ueberfeldt (2012) from CPS household survey data, over the years

1959-2012. Then, we discretize this process as a 3-state Markov Chain, Nz = 3.

As noted above, our exogenous aggregate state also includes credit shocks. These shocks, θ,

follow a 2-state Markov chain with realizations {θo, θl} and transition matrix:

Πθ =

 po 1− po
1− pl pl

 .
We associate θo with ordinary credit conditions and θl with a credit shock (low credit conditions).

In the transition matrix, po is the probability of continuing in ordinary borrowing conditions,

Pr{θ′ = θo|θ = θo}, while 1− pl is the probability of escape from crisis conditions, Pr{θ′ = θo|θ =

θl}. We select the parameters of the Πθ matrix using evidence on banking crises from Reinhart

and Rogoff (2009). Their definition of a banking crisis includes episodes where bank runs lead to

the closure or public takeover of financial institutions as well as those without bank runs where the

closure, merging, takeover or government bailout of one important financial institution is followed

by similar outcomes for others. They document 13 crises in the U.S. since 1800 and the share of

years spent in crises at 13 percent, which together imply an average crisis duration of 2.09 years.

Given our use of postwar targets to calibrate the remaining parameters of our model, the more

appropriate statistics for our purposes are those from the period 1945-2008, wherein the U.S. has
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had two banking crises (the 1989 savings and loan crisis and the 2007 subprime lending crisis).9

Unfortunately, it is not possible to determine the average length of a U.S. crisis from this sample

period, without knowing the ending date of the most recent crisis. Given this diffi culty, alongside

Reinhart and Rogoff’s argument that the incidence and number of crises is similar across the

extensive set of countries they consider, we focus instead on their data for advanced economies.

The average number of banking crises across advanced economies over 1945 - 2008 was 1.4, while

the share of years spent in crisis was 7 percent. Combining these observations, we set po = 0.9765

and 1− pl = 0.3125 so that the average duration of a credit crisis in our model is 3.2 years, and

the economy spends 7 percent of time in the crisis state.

We assume θ = θo in calibrating our steady state, and we choose ρ(θo) = 0.37, consistent

with estimates of debt recovery rates under default in ordinary conditions. In times of a credit

shock (θ = θl), we assume the recovery rate falls to ρ (θl) = 0 and firms suffer a balance sheet

shock ξ1 (εi) = 0.035π∗ (k∗(εi), εi), where π∗ (k∗(εi), εi) is the steady state level of flow profits

for a firm operating with the effi cient level of capital for εi.10 By scaling firms’financial costs

of operation up with their optimal production levels, we ensure even unconstrained firms are not

entirely unaffected by a credit shock. We call ξ1 (εi) a balance sheet shock because it applies

only when θ = θl, and it is a purely financial shock that redistributes cash from firms back to

households. To be clear, in contrast to the real operating cost (ξ0) that must be paid by firms

in any period, ξ1 (εi) does not enter the aggregate resource constraint. Thus, recalling that

defaulting firms’capital not recovered lenders is always lump-sum rebated to households, a credit

shock generates no real resource costs directly.

We assume all entrants begin with a common idiosyncratic productivity (ε7) just below the

median level. This is a simple way to prevent selection among entrants that would lead their

average productivity to exceed that of incumbents. Potential entrants share a common level of

debt near zero, b0 = 0.04. They draw their initial capitals, however, from a Pareto distribution

with lower bound k0 and curvature parameter κ0; this ensures a distribution of potential entrants

among which those with higher levels of capital will enter.

9These observations are consistent with findings by Bianchi and Mendoza (2012); they document a frequency of

financial crisis at 3 percent, consistent with three financial crisis in the U.S. over the past hundred years. Mendoza

(2010) estimates a crisis frequency of 3.6 percent across emerging economies since 1980.
10The scaling parameter for ξ1 (εi) is currently set to 0.035 to generate an endogenous decline in measured TFP

following a credit shock in our model that matches the exogenous TFP shock we separately consider below toward

comparing responses in other series to real versus financial shocks.
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We calibrate the remaining parameters of our model to reproduce the average aggregate in-

debtedness of U.S. firms and a series of moments drawn from U.S. firm-level data. In particular,

we select ξ0 (real operating cost), πd (exogenous departure rate among producing firms), k0 (lower

bound for capital in new firms), κ0 (curvature parameter for new firm capital distribution), along-

side ρε and σ
2
ηε
(persistence and volatility of firm productivity shocks) to reproduce the following

6 empirical targets: (i) the average debt-to-assets ratio of nonfarm nonfinancial businesses over

1954-2006 in the Flow of Funds (0.372), (ii) an average one-year cumulative default rate of 2

percent (Standard and Poor’s), (iii) an average size among entrants, relative to incumbent firms,

of approximately 14 percent, (iv) average entry and exit rates of 10 percent, and two aspects of

establishment-level investment data documented by Cooper and Haltiwanger (2006) based on a

17-year sample drawn from the Longitudinal Research Database. The firm-level investment mo-

ments we target are (v) the average mean investment rate (i/k) across establishments (0.122) and

(vi) the average standard deviation of investment rates (0.337). While our model has life-cycle

aspects affecting firms’ investments, the Cooper and Haltiwanger (2006) dataset includes only

large manufacturing establishments that remain in operation throughout their sample period.

Thus, in undertaking this part of our calibration, we must select an appropriate model-generated

sample for comparability with their sample. This we do by examining a subset of financially

unconstrained firms.

After choosing
(
ρε, σηε

)
and discretizing the idiosyncratic shock process, we shift each of the

resulting 15 support points for ε upward by one index and add a zero value as the lowest of

Nε = 16 support points; ε1 = 0. We assume the 0 draw occurs with probability πε0 = 0.1

independently of the previous idiosyncratic productivity draw. We further assume that firms

realizing ε = 0 face the same transition probabilities as do new firms drawing what is now ε = ε8.11

Because young firms rely heavily on flow income to repay their debts, the introduction of this

zero productivity shock level allows us to reproduce a realistic life-cycle wherein young firms do

not rapidly overcome borrowing constraints and adopt effi cient levels of capital.12 Finally, given

our remaining parameters, we set the measure of potential new firms each period, µ0, so that our

long-run average number of firms in production is 1.

11Each of the original transition probabilities is multiplied by 0.9, a first column is added to reflect the 0.1

transition probability from any current ε to ε′ = ε0, and a first row identical to row 8 is added.
12There are alternatives to ensure a similar growth phase for firms; one is to add a random component to firm

operating costs that is proportional to capital.
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TABLE 1. Parameter Values

β ν δ α ϕ ρz σηz

0.96 0.60 0.067 0.265 2.15 0.9092 0.0145

k0 κ0 πd µ0 ξ0 ρε σηε

0.0233 3.0 0.08 0.2 0.009 0.653 0.0575

5 Results

In our model, collateral constraints arise endogenously, and these constraints are forward-

looking. Among any group of firms sharing common cash on hand, irrespective of their current

capital stocks, a firm with higher productivity can borrow more (at a better rate) than one with

lower productivity. Compared to a setting with exogenous borrowing constraints, this tends to

reduce the misallocation of capital across continuing firms. Nonetheless, shocks to the productivity

of financial intermediation can cause large reductions in real economic activity. This is in part

because, in endogenizing firms’borrowing limits, we have introduced endogenous procyclical entry

and countercyclical exit, which themselves amplify the effects of shocks in our model. We begin

this section with a summary of our model’s steady state. Next, we present moments drawn

from a long simulation with real and credit shocks consistent with our calibration. Thereafter,

we consider the distinct responses in our model following a credit shock versus those following a

traditional TFP shock and compare our results to the most recent U.S. recession.

5.1 Steady state

Even in steady state, the aggregate implications of financial frictions in our model are con-

siderable. Relative to an otherwise identical economy with perfect credit markets, the allocation

of capital is distorted by the fact that firms’ choices of future capital depend upon their cash

on hand. Absent financial frictions, each firm with current productivity εi would simply select

k′ to equate the unit purchase price of investment to its expected discounted marginal return to

capital, q0
∑
j
πεij [πk (k′, εj) + 1 − δ]. Thus, k′ would depend only upon εi, and the coeffi cient of

variation of firms’capital choices, conditional on ε, would be 0.

Our economy has wide variation in firms’k′(x, ε) choices for any ε. The coeffi cient of variation

of capital ranges from 0.82 among continuing firms with the highest ε to 1.52 for firms with the
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lowest positive ε, and it is 1.73 among firms drawing the median positive productivity. Across

firms with positive ε, persistence in idiosyncratic productivity leads firms with higher current

productivity to expect higher levels of future cash on hand for any choice of capital and debt. Since

firms lose their cash on hand in the event of default, and more cash implies easier repayment of

any given debt, this makes high productivity firms less likely to default, improving their borrowing

terms. Thus, more of them adopt capital close to their effi cient level and there is less dispersion

in their capital choices. Nonetheless, examining the dispersion across all levels of idiosyncratic

productivity (and weighting by the invariant distribution of ε), the average coeffi cient of variation

is 1.4, and 43 percent of continuing firms select k′ < k∗(εi).

A second source of capital misallocation arises from the fact that endogenous exit among

firms with low cash on hand eliminates valuable productive locations; the number of firms falls

from 2.5 to 1.0 when we move to our model from an otherwise identical model without financial

frictions (where all new firms begin with initial debt suffi ciently negative as to imply all firms are

financially unconstrained). In the long run, when compared to an otherwise identical model with

no financial frictions, the aggregate effect of these two sources of misallocation is to reduce steady

state measured TFP by 15 percent, capital by 32.2 percent, and GDP by 26.1 percent. Focusing

only on the misallocation of the capital stock across continuing firms by adjusting µ0 to hold the

number of firms fixed at 1.0, we find the losses in long-run TFP, capital and GDP associated with

financial frictions are 1.5, 9.9 and 4.6 percent, respectively.

Figure 1 presents firms’decision rules for capital and debt as a function of their production-

time cash on hand (measured along the front axis, rising from right to left) and current productiv-

ity (measured along the right axis, rising from front to back). At any given level of productivity,

each panel reflects four regions of firms. The right-most area, which starts below x = 0.0031 for

firms with lower levels of ε and just below 0 for firms with higher levels, represents levels of cash

on hand at which firms cannot obtain funds to finance any positive investment. Looking slightly

leftward, we come to a narrow region where the choices of both capital and debt rise with the

level of cash on hand. In this region, type 2 firms have their investment activities curtailed by

the loan rate schedules they face. Leftward still, once x has risen suffi ciently, capital choices no

longer rise with cash on hand and debt falls. This is a region associated with the decisions of

type 1 firms. They adopt the frictionless capital stocks corresponding to their productivities and

begin drawing down their debt. As x grows suffi ciently large, these firms begin to save. Finally,
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in the left-most region, at cash on hand between 4.34 for the lowest positive level of ε and 4.68

for the highest, we have unconstrained firms. The capital and debt or savings levels adopted

by this group of firms depends only on productivity. Recall from section 3 that these firms pay

dividends linear in their x, as may be seen in Figure 2.

Figure 2 focuses more closely on the decision rules from the previous figure, showing just three

productivity levels (ε2, ε8 and ε15) plotted in distinct panels. The middle panel shows the capital,

debt and dividends adopted by firms with productivity just below the median positive level, while

the upper and lower panels represent lower and higher productivity, respectively. Consistent with

our observations from the previous figure, firms cannot borrow or invest when their production

time cash on hand is very low. Firms with x suffi ciently low that implied dividends are negative

must default and exit; these are levels of x at or below a default threshold. Default thresholds fall

in ε. Persistence in idiosyncratic productivity, and the fact that profit and thus cash on hand

rises in ε, implies that firms with higher current ε have higher expected future value. This makes

them less likely to default on any current loan.

In the middle panel, we see type 2 firms at cash on hand levels between around 0 and 0.16.

As mentioned above, type 2 firms’capital choices generally rise with cash on hand. Current x

predicts x′, which a firm will lose if it defaults. Thus, firms with higher current x generally have

a higher probability of repaying their loans. As a result, loan discount rates offered to firms in

this region generally improve with their cash on hand, and the b′ and k′ choices rise in x. One

interesting aspect of this region is that, for some levels of cash on hand, type 2 firms will gamble.

This may be seen particularly at high current productivity levels, as in the bottom panel of Figure

2. There, firms with very low cash take on more debt, choosing a higher risk premium, than do

firms with the same productivity that hold more cash, and hence have more to lose in the event

of default next period. Returning to the middle panel, for x between 0.16 and 4.39, we have type

1 firms. These firms adopt the frictionless capital choice without paying any risk premium; they

choose k∗(ε) and steadily draw down their debt as their cash on hand rises. Finally, firms with

cash above 4.39 in this panel are unconstrained (type 0); their k′ and b′ are independent of x,

while their dividends are linear in x.

Figure 3 overviews the salient aspects of our economy’s stationary distribution. There, we

present the distribution of firms over debt (rising from right to left along the front axis) and capital

(rising from front to back along the left axis) across all levels of idiosyncratic productivity, as firms
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enter the current period. Each of three types of firms may be identified in this figure. There are

15 horizontal line segments associated with the 15 positive ε realizations from the previous period

(firms with ε1 = 0 expect the same future distribution of future productivity as those with ε8).

Each line segment features a constant level of capital corresponding to the effi cient choice for an

ε, with these ranging from 0.67 to 3.94, and each covers a wide region of debt levels.

Unconstrained firms lie at the end of the horizontal line segments in Figure 3, at the lowest

levels of debt (highest levels of financial savings). In the absence of changes to their ε, such firms

maintain k∗ (ε) and adopt the b′ implied by the minimum savings policy from (22) - (23). Recall

that this debt policy maintains their minimum cash on hand next period above a threshold level

to ensure they never face a risk premium in financing their investment loans. Mean reversion in

ε implies that firms with lower current levels of idiosyncratic productivity expect higher percent

increases in their effi cient level of future capital; they must maintain higher financial savings so

that they can frictionlessly adopt the effi cient capital stock following a future increase in ε. Firms

with higher current ε adopt higher levels of capital, so they need not carry as much savings into

the next period to ensure they face no probability of a future risk premium. Thus, unconstrained

firms’ savings is negatively correlated with the capital choice and current productivity. Debt

levels for unconstrained firms range from −3.8316 for firms with the lowest positive ε to −0.7848

for firms with the highest, and the weighted average debt level among such firms is −2.828.

Firms with the same capital stock as unconstrained firms, but higher levels of debt or lower

levels of savings, are type 1 firms. They fill each line segment below its right endpoint. As already

mentioned, these firms pay no dividends. Instead, they steadily reduce their debt, making their

way rightward along their respective ε segments until they are able to follow both the capital

choice and the savings rule of a corresponding unconstrained firm with their ε.

The long diagonal in Figure 3, beginning around (k, b) = (0.07, 0.05) and moving northwest

to (k, b) = (3.92, 3.67) is the distribution of type 2 constrained firms. These firms begin with low

levels of capital and debt and slowly increase both as their cash on hand grows. Conditional on

survival, such firms will become type 1 firms when they reach the capital stock associated with

effi cient investment for their ε. Until then, however, they produce with ineffi ciently low levels of

capital and are vulnerable to current default and exit.13 It is these firms that transmit our econ-

13When we simulate a large cohort of firms in our model’s steady state, we find similar growth in the typical

firm’s capital and employment in the early periods of its life as present in the Khan and Thomas (2013) exogenous

collateral constraint model. There are two differences here. First, firm growth is conditional on survival, and
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omy’s financial market imperfections into large reductions in GDP, investment and consumption.

Interestingly, the set of type 2 firms (which varies in current ε) is identified by an approximately

constant leverage ratio. This implies that they tend to have very similar levels of cash on hand,

although they differ substantially in their size.

Figure 4 overviews the implications of this stationary distribution for beginning of period cash

on hand levels, corresponding to x+ξ0. Of course, a firm starting the period with a given (k, b, ε)

will actually achieve π (k, ε) + (1 − δ)k − b only if it pays its ξ0 and continues into production.

Unconstrained firms lie at the right edge of the cash distribution with a weighted average of 4.45.

As noted above, the minimum level of cash on hand identifying an unconstrained firm generally

rises in ε and ranges from 4.34 to 4.68. At the left end of the figure, potential producers with

levels of x near 0 are type 2. Between these two extremes are type 1 firms carrying levels of cash

ranging between 0.08 and 0.43.

Some type 2 firms are new firms that will choose not to enter and produce; others are incumbent

firms that default on their debt and exit immediately. By contrast, all type 1 and unconstrained

firms continue into production and repay their debt. Thus, endogenous exit occurs only among

type 2 firms. As a result, across the distribution of firms at the start of a period summarized

by Figure 4, 7 percent are unconstrained, 53 percent are type 1 and 40 percent are type 2. By

contrast, only 33 percent of all firms in production are of type 2, and they produce 10 percent of

GDP. In sum, a small measure of firms in the economy actually produces with an ineffi ciently low

capital stock

5.2 Business Cycles

We next consider business cycles driven by shocks to total factor productivity and credit

shocks. We solve for stochastic equilibrium using the method of Krusell and Smith (1999), ap-

proximating the endogenous component of the aggregate state using the first moment of the

distribution of capital. Table 2 reports the results of a 5000 period simulation of our full model.

our model has endogenous exit. Exit rates fall with age in our model as they do in the micro-level data (Dunne,

Roberts and Samuelson (1989)). Second, conditional on survival, our firms reach maturity faster than in the Khan

and Thomas model. This comes partly from our lack of investment irreversibilities, partly from selection effects

associated with our endogenous entry and exit, and partly from our forward-looking loan rate schedules.

24



TABLE 2. Business Cycles with real and financial shocks

x = Y C I N K r

mean(x) 0.512 0.424 0.088 0.337 1.182 0.042

σx/σY (2.099) 0.493 4.019 0.618 0.540 0.421

corr(x, Y ) 1.000 0.872 0.949 0.921 0.106 0.679

Results from 5000 period simulation. Columns are GDP, consumption, investment, hours

worked, capital and risk-free real interest rate. Rows 2 and 3 report second moments for

HP-filtered series using weight 100; corr(exit,Y): −0.306; corr(entry,Y): 0.152.

Given our calibration from section 4, credit shocks are relatively rare, and business cycles are

largely driven by shocks to total factor productivity. As such, the response of our economy with

a rich distribution of firms broadly resembles a typical equilibrium business cycle model. GDP is

more variable than consumption, investment is more variable than output, and both are highly

procyclical, as is hours worked. Unlike a typical business cycle model, however, this setting has

an endogenous number of producers. Firm entry is procyclical, while exit is countercyclical.

Table 3 examines a version of our model with only TFP shocks. Comparing this to Table 2,

we see that the presence of credit shocks raises GDP volatility slightly and reduces its correlations

with consumption, employment and investment somewhat. Otherwise, business cycle moments

across the two tables are quite similar. This is entirely because credit shocks occur in only 7

percent of all dates, not because such shocks have little effect, as will be seen in the impulse

responses below. Those results are foreshadowed to an extent by the sharper relative volatilities

in employment and investment in Table 2 versus Table 3.

TABLE 3. Business Cycles with real shocks only

x = Y C I N K r

mean(x) 0.514 0.425 0.088 0.337 1.188 0.042

σx/σY (1.969) 0.515 3.624 0.549 0.501 0.458

corr(x, Y ) 1.000 0.936 0.968 0.944 0.090 0.650

Results from 5000 period simulation; corr(exit,Y): −0.367; corr(entry,Y): 0.296.

Figures 5 and 6 show our model’s impulse responses following a 1.75 percent persistent shock to

the exogenous component of total factor productivity. In most respects, the economy’s response is

similar to that of a representative firm equilibrium business cycle model without financial frictions.
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The largest response is in investment, and the GDP response exceeds that of consumption. Total

hours worked, consumption and investment are procyclical. Responses in output, hours and

investment are essentially monotone, and consumption exhibits the customary hump.

The lower right panel of Figure 5 shows a small gap between the exogenous change in TFP and

measured total factor productivity, which widens slightly over time. Figure 6 explains this as the

result of a gradual fall in the number of producers. With the persistent decline in productivity,

the risk-free real interest rate falls, implying a rise in the risk-free discount rate on loans in the top

left panel. However, many firms cannot borrow at the risk-free rate, or cannot borrow what they

wish to borrow. While not shown here, our analysis in section 2.3 implies that the negative TFP

shock yields a general worsening of firms’credit conditions. Reduced productivity raises default

probabilities; that, in turn, reduces firms’ability to borrow, yielding a rise in the fraction of type

2 constrained firms and further rationing such firms’investment activities. With this said, the

gradual decline in the overall level of debt in the economy is similar to that from a model with

exogenous collateral constraints (Khan and Thomas (2013)).

What is new in our current environment is the set of results in the lower two panels of Figure

6. We noted above that the fall in aggregate productivity worsens credit conditions for firms.

Given a reduced ability to borrow in light of reduced productivity, alongside lower productivity

on its own, firm values conditional on operating fall. Thus, the number of firms exiting the

economy rises. This is partly offset by a small rise in entry, as the fixed distribution of capital for

entrants implies a rise in their capital relative to existing firms. Following the negative TFP shock

examined here, the movements in entry and exit have nontrivial implications for the number of

firms undertaking production. The number of producers eventually falls by more than 0.6 percent.

Given decreasing returns to scale at the firm (α + ν = 0.865), these changes deliver a separate

source of misallocation beyond that associated with constrained capital choices among a fixed set

continuing firms. That extra source of propagation, changes in the measure of producers, drives

the wedge between exogenous TFP and measured TFP seen in Figure 5.

We now explore the response in our economy to a financial shock increasing firms’ cost of

borrowing and reducing their cash on hand. This shock is an unanticipated change in credit

conditions from θo to θl and lasts for 4 periods. While θ is at its low value in dates 1 through 4,

the fraction of collateral that lenders may recover falls from 0.37 to 0 while all firms experience

additional financial costs, ξ1(ε), amounting to balance sheet shocks. Because loan rate schedules
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are influenced by ρ (θ) and x (section 2.3), this directly increases the credit frictions facing firms.

However, recall that the shock has no direct real effect on the economy, as all defaulting firms’

capital not recouped by the intermediary is lump-sum returned to households, and the additional

financial costs reducing firms’balance sheets are transferred from firms to households.

Figures 7 and 8 show our economy’s responses to the credit shock. In date 1, measured TFP

falls slightly (0.14 percent) due to a small decline in the number of producers, as entry falls

and exit rises. There is a small rise in GDP (0.13 percent), employment (0.47 percent) and

investment (2.36 percent) at date 1, while consumption falls marginally (0.33 percent). Despite

the anticipated coming declines in measured TFP (bottom right panel) and thus in the return to

investment, the wealth effect is dominant in determining aggregate consumption and labor in this

period, which transmits to raised investment.

Aggregate productivity falls further in date 2 partly because the tightening of credit shifts type

2 constrained firms’capital stocks further than normal from the frictionless capitals associated

with their individual productivities and increases the relative number of such firms. However,

reductions in the numbers of producers are also an important contributing factor. As noted above,

our economy generates procyclical entry and countercyclical exit in response to the financial shock.

Despite greater diffi culty borrowing to finance their capital for the next period, firms already

have their capital in place for date 1, and no real shock affects their productivity. However, the fall

in their cash on hand following the financial shock makes borrowing more expensive for incumbent

firms and reduces their values. Thus, the number of firms that exit (default) rises slightly in the

first date of the shock, as seen in the lower left panel of Figure 8. Similarly, the value of entry

falls given higher operating costs and increased diffi culty in borrowing, reducing the number of

entrants sharply at date 1. These things together reduce the number of firms producing in date

1, and the number of potential producers in date 2. Over the next four periods, the number of

producers continues falling, and it ultimately reaches 11 percent below normal.

The upper left panel of Figure 8 illustrates how exacerbated misallocation (of both forms)

affects the return to saving over our credit-generated recession. With no direct disturbance to

aggregate productivity, the financial shock ultimately pushes the risk-free discount rate upward

by roughly 0.21 percentage points. Alternatively, the expected real interest rate falls about 21

basis points below normal over the first four dates of the shock. The gradual decline in the real

interest rate across dates 1 through 4 is driven by the increasing misallocation discussed above.
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Interestingly, the overall fall in lending in the top right panel of Figure 8 (at roughly 9.5

percent) is considerably smaller than that following a shock to collateral constraints in Khan and

Thomas (2013). This is in large part explained by the forward-looking nature of the endogenous

collateral constraints we study here. It is type 2 firms that are directly affected by our credit

shock. As in the previous study, these firms are typically smaller, younger firms. However, our

endogenous borrowing schedules spare some such firms, because lending rates are affected by firm

characteristics beyond their existing capital. Firms with high productivity can borrow at better

rates than otherwise similar firms with low productivity in our setting, and they can borrow more

than their counterparts in a setting where exogenous borrowing limits tighten.

Returning to Figure 7, note that economic conditions worsen steadily between dates 1 and 5,

despite unchanging credit conditions. GDP falls 4.7 percent by date 5 and the eventual reduction

in aggregate capital is somewhat larger, 5.8 percent. Interestingly, relative to the speed of the

downturn, the recovery following the credit shock recession is far slower. The credit shock ends

immediately after date 4, but both TFP and GDP fall further in date 5. Furthermore, despite the

similar decline in measured TFP here, the recovery in GDP is more gradual than that following

the real shock in Figure 5 when one accounts for the fact that the credit shock is eliminated

abruptly. Comparing figures 6 and 8, we see that there is far more damage to the number of

potential producers (due to much larger declines in entry and rises in exit) in response to the

credit shock. Given a fixed number of potential entrants each period, this large destruction

to the stock of firms is only gradually reversed. That in turn eliminates the incentive for a

rapid rebound in investment (fueled by a rapid rise in employment) to repair the physical capital

stock, which would otherwise follow a credit shock, because it holds measured TFP below average

across many dates. Thus, the slow rebuilding of the stock of firms protracts the recoveries in

employment, investment and GDP.

5.3 The recent recession

Table 4 compares the peak-to-trough behavior of our model in response to the TFP and

credit shocks from above with that over the 2007 U.S. recession. The data row reports seasonally

adjusted, HP-filtered real quarterly series and measures declines between 2007Q4 and 2009Q2.

The one exception to this is the debt entry, where we report the ultimate drop in the stock of real

commercial and industrial loans, which came later.
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TABLE 4. Peak-to-trough declines: U.S. 2007 recession and model

trough GDP I N C TFP Debt

data 2009Q2 5.59 18.98 6.03 4.08 2.18 25.94

credit shock 5 4.69 23.85 4.03 0.68 (2.53) 1.72 9.47

tfp shock 1 2.58 9.07 1.39 1.22 (1.64) 1.75 2.04

The credit shock row of Table 4 reports the declines in our model in response to the credit

shock described above. Declines in real series are reported as of the GDP trough date, period 5.

In contrast to other real series, the declines in consumption continue for several further periods, as

GDP recovers gradually while the rebuilding of the capital stock begins. Consumption ultimately

reaches 2.53 percent below average around date 10. As in the data, debt in the model falls more

slowly than GDP, and we report its ultimate decline, which occurs in date 8.

Relative to the endogenous decline in measured TFP, the reductions in GDP, investment,

employment and debt are disproportionate under the credit shock. This unusual aspect of our

model’s response to a credit shock response resembles that over the recent U.S. recession. In our

model, it appears to arise from the strong disincentives for investment in both physical capital

and firms when misallocation not only worsens, but is anticipated to worsen further over coming

periods. The nonmonotone path of measured TFP (despite the monotone path of θ) itself

happens as an increasing number of young cohorts are affected by tightened credit conditions,

and vulnerable incumbents are ultimately forced to exit.

In response to the productivity shock, by contrast, our model responses in GDP, investment

and employment are monotone. Thus, the trough in GDP occurs at date 1 in the TFP shock

row, and we report date 1 declines for all series except debt. Debt falls negligibly at the date of

the TFP shock, so here again we report the ultimate drop in that series, which happens 5 periods

after the impact of the TFP shock.

Our credit shock is comparable to the TFP shock if one considers its effect on aggregate

productivity; both model rows reproduce roughly 80 percent of the observed decline in measured

productivity. Note, however, the distinctions in other columns. The credit shock generates

roughly 84 percent of the observed reduction in GDP, 67 percent of the observed decline in hours

worked, 125 percent of the empirical drop in investment, and about 37 percent of the ultimate

decline in debt. By contrast, the exogenous TFP shock delivers only 46 percent of the reduction

in GDP seen over the 2007 recession. The fall in investment there is about half that in the data,
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there is no significant decline in debt, and the fall in employment is only about one-quarter the

decline observed over the 2007 U.S. recession.

6 Concluding remarks

We have developed a model where the aggregate state includes a distribution of firms over

idiosyncratic productivity, capital and debt. Firms are risky borrowers, and equilibrium loan

rate schedules are consistent with each borrower’s default risk. We associate default with exit,

and find that, following a persistent shock to exogenous total factor productivity, our model

economy’s response is broadly similar to a representative firm equilibrium business cycle model

without financial frictions. In contrast, while our economy is consistent with the average aggregate

debt-to-asset ratio in the U.S., and only a small percentage of firms have investment hindered by

financial frictions ordinarily, a credit shock affecting firms’balance sheets and the recovery rates

for lenders in the event of default generates a large and lasting recession.

Our model’s credit shock recession unravels through two sources of capital misallocation that

grow over several periods after the onset of the shock. First, there is a gradual rise in the

misallocation of capital across continuing firms as several subsequent cohorts of young firms with

little cash but high expected future productivity encounter worsened borrowing terms. Second,

there are large endogenous reductions in firm entry and increases in exit following the credit shock

that sharply reduce the number of firms over the downturn. Because the number of production

locations is itself a valuable input affecting the productivity of the aggregate stock of capital, this

second misallocation effect compounds the first in moving the distribution of production further

away from an effi cient distribution and reducing measured productivity. Furthermore, because

this substantial damage to the stock of firms takes time to repair, our model delivers a far more

gradual rebuilding of the aggregate capital stock, and thus more gradual recoveries in employment

and investment than would otherwise occur. Despite these differences in the model response to

real versus financial shocks, our setting delivers business cycle moments similar to a snapshot of

postwar U.S. business cycles, because credit shocks in our model, as in the data, are infrequent.
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                                                 FIGURE 8.  Credit Shock: part 2
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